Neutral Delay Equations from and for Population Dynamics
نویسنده
چکیده
For a certain class of neutral differential equations it is shown that these equations can serve as population models in the sense that they can be interpreted as special cases or caricatures of the standard Gurtin-MacCamy model for a population structured by age with birth and death rate depending on the total adult population. The delayed logistic equation does not belong to this class but the blowfly equation does. These neutral delay equations can be written as forward systems of an ordinary differential equation and a shift map. There are several quite distinct ways to perform the transformation to a system, either following a method of Hale or following more closely the renewal process. Similarly to the delayed logistic equation, the neutral equation (and the blowfly equation as a special case) exhibit periodic solutions, although only for a restricted range of parameters. subject classification: Primary 34K40, 34K17 ; Secondary 92D25 key words: neutral delay equation, population model, blowfly equation, quasilinear
منابع مشابه
Existence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملOn the Nonoscillation of Second-Order Neutral Delay Differential Equation with Forcing Term
During the last two decades, there has been much research activity concerning the oscillation and nonoscillation of solutions of neutral type delay differential equations see 1–9 . Investigation of such equations or systems, besides of their theoretical interest, have some importance in modelling of the networks containing lossless transmission lines, in the study of vibrating masses attached t...
متن کامل